AI圖像識別:人類看的是形狀,算法看的是紋理

0 評論 10625 瀏覽 11 收藏 13 分鐘

人類會關(guān)注圖中對象的形狀,深度學(xué)習(xí)計算機(jī)系統(tǒng)所用的算法不一樣,它會研究對象的紋理。

圖片中的動物輪廓是貓,但是貓披著大象皮膚紋理,將圖片交給人識別,人會說是貓,如果給計算機(jī)視覺算法處理,它會說是大象。德國研究人員認(rèn)為:人看的是形狀,計算機(jī)看的是紋理。

這一發(fā)現(xiàn)相當(dāng)有趣,但它證明計算機(jī)算法離人類視覺還有很遠(yuǎn)距離。

當(dāng)你看著一張貓的照片,輕松就能知道貓有沒有條紋,不管照片是黑白照,有斑點,還是磨損或者褪色了,都能輕松識別。不論寵物蜷縮在枕頭背后;或者跳到工作臺上,拍照時留下一片朦朧,你都能輕松識別。如果用機(jī)器視覺系統(tǒng)(用深度神經(jīng)網(wǎng)絡(luò)驅(qū)動)識別,準(zhǔn)確率甚至比人還要高,但是當(dāng)圖片稍微新奇一點,或者有噪點、條紋,機(jī)器視覺系統(tǒng)就會犯傻了。

為什么會這樣呢?

德國研究團(tuán)隊給出一個原因,這個原因出乎意料:人類會關(guān)注圖中對象的形狀,深度學(xué)習(xí)計算機(jī)系統(tǒng)所用的算法不一樣,它會研究對象的紋理。

德國的發(fā)現(xiàn)告訴我們?nèi)祟惻c機(jī)器“思考”問題時有著明顯區(qū)別,也許還能揭示人類視覺進(jìn)化的秘密。

有大象皮膚的貓和時鐘做的飛機(jī)

深度學(xué)習(xí)算法是怎樣“工作”的呢?

首先人類向算法展示大量圖片,有的圖片有貓,有的沒有。算法從圖片中找到“特定模式”,然后用模式來做出判斷,看看面對之前從未見過的圖片應(yīng)該貼怎樣的標(biāo)簽。

神經(jīng)網(wǎng)絡(luò)架構(gòu)是根據(jù)人類視覺系統(tǒng)開發(fā)的,網(wǎng)絡(luò)各層連接在一起,從圖片中提取抽象特點。神經(jīng)網(wǎng)絡(luò)系統(tǒng)通過一系列聯(lián)系得出正確答案,不過整個處理過程十分神秘,人類往往只能在事實形成之后再解釋這個神秘的過程。

美國俄勒岡州立大學(xué)計算機(jī)科學(xué)家Thomas Dietterich說:“我們正在努力,想搞清到底是什么讓深度學(xué)習(xí)計算機(jī)視覺算法走向成功,又是什么讓它變得脆弱?!?/p>

怎樣做?研究人員修改圖片,欺騙神經(jīng)網(wǎng)絡(luò),看看會發(fā)生什么事。研究人員發(fā)現(xiàn),即使只是小小的修改,系統(tǒng)也會給出完全錯誤的答案,當(dāng)修改幅度很大時,系統(tǒng)甚至無法給圖片貼標(biāo)簽。還有一些研究人員追溯網(wǎng)絡(luò),查看單個神經(jīng)元會對圖像做出怎樣的反應(yīng),理解系統(tǒng)學(xué)到了什么。

德國圖賓根大學(xué)(University of Tübingen)科學(xué)家Geirhos領(lǐng)導(dǎo)的團(tuán)隊采用獨特方法進(jìn)行研究。去年,團(tuán)隊發(fā)表報告稱,他們用特殊噪點干擾圖像,給圖像降級,然后用圖像訓(xùn)練神經(jīng)網(wǎng)絡(luò),研究發(fā)現(xiàn),如果將新圖像交給系統(tǒng)處理,這些圖像被人扭曲過(相同的扭曲),在識別扭曲圖像時,系統(tǒng)的表現(xiàn)比人好。不過如果圖像扭曲的方式稍有不同,神經(jīng)網(wǎng)絡(luò)就無能為力了,即使在人眼看來圖像的扭曲方式并無不同,算法也會犯錯。

對于這樣的結(jié)果如何解釋?

研究人員深入思考:到底是什么發(fā)生了變化,即使只是加入很少的噪點,也會發(fā)生如此大的變化?

答案是紋理。當(dāng)你在很長的時間段內(nèi)添加許多噪點,圖中對象的形狀基本不會受到影響;不過即使只是添加少量噪點,局部位置的架構(gòu)也會快速扭曲。研究人員想出一個妙招,對人類、深度學(xué)習(xí)系統(tǒng)處理圖片的方式進(jìn)行測試。

研究人員故意制作存在矛盾的圖片,也就是說將一種動物的形狀與另一種動物的紋理拼在一起,制作成圖片。例如:圖片中的動物輪廓是貓,但是貓披著大象紋理;或者是一頭熊,但它們是由鋁罐組成的;又或者輪廓是飛機(jī),但飛機(jī)是由重疊的鐘面組成的。

研究人員制作幾百張這樣的拼湊圖片,然后給它們標(biāo)上標(biāo)簽,比如貓、熊、飛機(jī)。用4種不同的分類算法測試,最終它們給出的答案是大象、鋁罐、鐘,由此看出算法關(guān)注的是紋理。

Columbia大學(xué)計算機(jī)神經(jīng)科學(xué)家Nikolaus Kriegeskorte評論說:“這一發(fā)現(xiàn)改變了我們對深度前向神經(jīng)網(wǎng)絡(luò)視覺識別技術(shù)的認(rèn)知。”

乍一看,AI偏愛紋理而非形狀有點奇怪,但細(xì)細(xì)深思卻是有理的。

Kriegeskorte說:“你可以將紋理視為精密的形狀。”

對于算法系統(tǒng)來說精密的尺寸更容易把握:包含紋理信息的像素數(shù)量遠(yuǎn)遠(yuǎn)超過包含對象邊界的像素數(shù)量,網(wǎng)絡(luò)的第一步就是檢測局部特征,比如線條,邊緣。

多倫多約克大學(xué)計算機(jī)視覺科學(xué)家John Tsotsos指出:“線段組按相同的方式排列,這就是紋理?!?/p>

Geirhos的研究證明,憑借局部特征,神經(jīng)網(wǎng)絡(luò)足以分辨圖像。

另有科學(xué)家開發(fā)一套深度學(xué)習(xí)系統(tǒng),它的運行很像深度學(xué)習(xí)出現(xiàn)之前的分類算法——像一個特征包。

算法將圖像分成為小塊,接下來,它不會將信息逐步融合,變成抽象高級特征,而是給每一小塊下一個決定,比如這塊包含自行車、那塊包含鳥。再接下來,算法將決定集合起來,判斷圖中是什么,比如有更多小塊包含自行車線索,所以圖中對象是自行車。算法不會考慮小塊之間的空間關(guān)系。結(jié)果證明,在識別對象時系統(tǒng)的精準(zhǔn)度很高。

研究人員Wieland Brendel說:“這一發(fā)現(xiàn)挑戰(zhàn)了我們之前的假定,我們之前認(rèn)為深度學(xué)習(xí)的行為方式與舊模型完全不同。很明顯,新模型有很大飛躍,但飛躍的幅度沒有大家預(yù)料的那么大?!?/p>

約克大學(xué)、多倫多大學(xué)博士后研究員Amir Rosenfeld認(rèn)為,網(wǎng)絡(luò)應(yīng)該做什么,它實際做了什么,二者之間仍有很大差異。

Brendel持有相似觀點。他說,我們很容易就會假定神經(jīng)網(wǎng)絡(luò)按人類的方式完成任務(wù),忘了還有其它方式。

向人類視覺靠近

目前的深度學(xué)習(xí)技術(shù)可以將局部特征(比如紋理)與整體模式(比如形狀)結(jié)合 在一起。

Columbia大學(xué)計算機(jī)神經(jīng)科學(xué)家Nikolaus Kriegeskorte說:“在這些論文中有一點讓人感到稍稍有些奇怪,架構(gòu)雖然允許這樣做,不過如果你訓(xùn)練神經(jīng)網(wǎng)絡(luò)時只是希望它分辨標(biāo)準(zhǔn)圖像,它不會自動整合,這點在論文中得到明顯證明?!?/p>

如果強(qiáng)迫模型忽視紋理,又會怎樣呢?Geirhos想找到答案。團(tuán)隊將訓(xùn)練分類算法的圖片拿出來,用不同的方式給它們“粉刷”,將實用紋理信息剔除,然后再用新圖片重新訓(xùn)練深度學(xué)習(xí)模型,系統(tǒng)轉(zhuǎn)而依賴更全局的模式,像人類一樣更加偏愛形狀。

當(dāng)算法這樣行動時,分辨噪點圖像的能力同樣更強(qiáng)了,雖然在此之前研究人員并沒有專門訓(xùn)練算法,讓它識別扭曲圖像。

對于人類來說,可能自然而然也存在這樣的“偏愛”,比如偏愛形狀,因為當(dāng)我們看到一件東西,想確定它是什么時,靠形狀判斷是最有效的方式,即使環(huán)境中有許多干擾,同樣如此。人類生活在3D世界,可以從多個角度觀察,我們還可以借助其它感知(比如觸覺)來識別對象。所以說,人類偏愛形狀勝過紋理完全合理。

德國圖賓根大學(xué)研究人員Felix Wichmann認(rèn)為:這項研究告訴我們數(shù)據(jù)產(chǎn)生的偏見和影響遠(yuǎn)比我們認(rèn)為的大得多。之前研究人員也曾發(fā)現(xiàn)相同的問題,例如:在面部識別程序、自動招聘算法及其它神經(jīng)網(wǎng)絡(luò)中,模型過于重視意料之外的特征,因為訓(xùn)練算法所用的數(shù)據(jù)存在根深蒂固的偏見。想將這種不想要的偏見從算法決策機(jī)制中剔除相當(dāng)困難,盡管如此,Wichmann認(rèn)為新研究證明剔除還是有可能的。

雖然Geirhos的模型專注于形狀,不過如果圖像中噪點過多,或者特定像素發(fā)生變化,模型仍然會失敗。由此可以證明,計算機(jī)算法離人類視覺還有很遠(yuǎn)距離。在人類大腦中,可能還有一些重要機(jī)制沒有在算法中體現(xiàn)出來。Wichmann認(rèn)為,在某些情況下,關(guān)注數(shù)據(jù)集可能更重要。

多倫多大學(xué)計算機(jī)科學(xué)家Sanja Fidler認(rèn)同此觀點,她說:“我們要設(shè)計更聰明的數(shù)據(jù)和更聰明的任務(wù)?!彼屯抡谘芯恳粋€問題:如何給神經(jīng)網(wǎng)絡(luò)分派第二任務(wù),通過第二任務(wù)讓它在完成主任務(wù)時有更好表現(xiàn)。受到Geirhos的啟發(fā),最近她們對圖像分類算法進(jìn)行訓(xùn)練,不只讓算法識別對象本身,還讓它識別對象輪廓(或者形狀)中的像素。

結(jié)果證明,執(zhí)行常規(guī)對象識別任務(wù)時,神經(jīng)網(wǎng)絡(luò)越來越好,自動變得越來越好。

Fidler指出:“如果指派單一任務(wù),你會特別關(guān)注某些東西,對其它視而不見。如果分派多個任務(wù),也許能感知更多。算法也是一樣的?!?/p>

當(dāng)算法執(zhí)行多個任務(wù)時,它會關(guān)注不同的信息,就像Geirhos所做的“形狀紋理”實驗一樣。

美國俄勒岡州立大學(xué)計算機(jī)科學(xué)家Thomas Dietterich認(rèn)為:“這項研究是一個激動人心的突破,深度學(xué)習(xí)到底發(fā)生了什么?我們對此有了更深的理解,也許研究還能幫助我們突破極限,看到更多東西。正因如此,我很喜歡這些論文?!?/p>

 

原文鏈接:https://www.quantamagazine.org/where-we-see-shapes-ai-sees-textures-20190701/

譯者:小兵手

本文由 @36氪 授權(quán)發(fā)布于人人都是產(chǎn)品經(jīng)理,未經(jīng)作者許可,禁止轉(zhuǎn)載

題圖來自Unsplash,基于CC0協(xié)議

作者:叢文蕾;公眾號:窄播(ID:exact-interaction)

來源:https://mp.weixin.qq.com/s/t7JE8sBw3hw4e4Xv23OWsg

本文由 @窄播 授權(quán)發(fā)布于人人都是產(chǎn)品經(jīng)理,未經(jīng)作者許可,禁止轉(zhuǎn)載

題圖來自 Unsplash,基于 CC0 協(xié)議

該文觀點僅代表作者本人,人人都是產(chǎn)品經(jīng)理平臺僅提供信息存儲空間服務(wù)。

更多精彩內(nèi)容,請關(guān)注人人都是產(chǎn)品經(jīng)理微信公眾號或下載App
評論
評論請登錄
  1. 目前還沒評論,等你發(fā)揮!