AI大模型在汽車行業(yè)應(yīng)用探索

0 評論 3058 瀏覽 28 收藏 16 分鐘

ChatGPT之類的大模型誕生后,國內(nèi)的公司基本上分出了兩條路線:一條是做自己的AI大模型,另一條是在AI大模型的應(yīng)用上發(fā)力,解決使用場景的問題。

作為高科技工業(yè)的代表,汽車行業(yè)天然適合AI大模型的使用。這篇文章,就講述了大模型在汽車行業(yè)的探索情況。

一、AI大模型的前世今生

1. 大模型發(fā)展概述

人工智能早在1956年就已出現(xiàn),后面在此基礎(chǔ)上又出現(xiàn)了機器學習。在發(fā)展過程中,算法層面變得更為豐富。進一步發(fā)展,又出現(xiàn)了深度學習,引入了神經(jīng)網(wǎng)絡(luò)?;谏疃葘W習,在2021年出現(xiàn)了預(yù)訓練大模型。2023年ChatGPT的發(fā)布,引起了人們更多的關(guān)注和更廣泛深入的探索。

2. 什么是大模型

到底什么是大模型,大模型大在什么地方?

首先,算法模型不一樣,最早是transformer奠定了后續(xù)各類大模型的模型基礎(chǔ)。其次是海量參數(shù),以前的模型最多只有百萬級參數(shù),而現(xiàn)在的大模型常常是億級、十億級,甚至百億級。第三是海量數(shù)據(jù),預(yù)訓練會用到很多的數(shù)據(jù),比如ChatGPT完全是基于網(wǎng)上數(shù)據(jù)去進行預(yù)訓練。

3.大模型很強大,但仍處于早期發(fā)展階段

大模型能力很強大,真正比較深入的應(yīng)用還不是很多,整體上還處于早期的階段,因此在行業(yè)應(yīng)用中會碰到各種問題。

1)成本高

如果去做一個垂類的大模型應(yīng)用,首先考慮部署,私有或者共有。私有部署需要基礎(chǔ)數(shù)據(jù)標注、訓練成本、算力成本、預(yù)訓練團隊成本。在訓練完成后,上線使用還會有推理成本。

2)垂類應(yīng)用難

現(xiàn)在應(yīng)用較多的還是通用大模型,通過文字輸入一些問題,以知識庫的形式去回答,一旦聚焦到解決具體行業(yè)問題時,經(jīng)常難以滿足一些垂類應(yīng)用。比如AIGC做一些營銷素材的生成,如果嫁接到汽車行業(yè)里面去解決一個具體的問題,還是比較難的,中間會需要很多的調(diào)整,以及預(yù)訓練。

3)安全問題

大模型應(yīng)用時,尤其是知識庫,會涉及到各種各樣的敏感問題,答案輸出也需要考慮是否符合國家相關(guān)規(guī)范,因此大模型需要解決合規(guī)的一些問題。

4)隱私問題

與個人相關(guān),包括法律法規(guī)規(guī)定的一些敏感數(shù)據(jù),一定不能通過通用大模型去輸出。

4. 大模型催生“效率革命”,為產(chǎn)業(yè)提質(zhì)增效

經(jīng)常會有人問,大模型能夠創(chuàng)造什么價值?其價值的核心在于效率,為各個產(chǎn)業(yè)降本增效起到積極的作用。

1)能力比較強

大模型在專業(yè)領(lǐng)域,包括推理能力上比人強很多。

2)效率更“高”

AI大模型,以及衍生出的AI數(shù)字員工,能夠代替一部分人工的工作,提高效率。

3)場景更“廣”

AI大模型的應(yīng)用場景廣泛,比如汽車營、銷、服、研、產(chǎn)、供等各個環(huán)節(jié),包括智能駕駛、智能座艙等等,各個車企都已經(jīng)開始實現(xiàn)大模型上車,在車上真正的去使用大模型。

4)應(yīng)用更“深”

無論是行業(yè)級應(yīng)用,還是具體產(chǎn)生直接價值的應(yīng)用,大模型+AI將推動全鏈路的智能化。

二、AI大模型在汽車營、銷、服領(lǐng)域的探索

1. 汽車營、銷、服業(yè)務(wù)全景圖

在整個營、銷、服階段有很多環(huán)節(jié)都可以基于AI大模型去進行賦能。我們對這些環(huán)節(jié)逐一進行了探索和嘗試,尋找可以真正落地的場景。

2. 營銷:提高內(nèi)容產(chǎn)出效率,助力線索提升

1)輿情問題智能匹配

在輿情問題發(fā)生后,需要質(zhì)量部門的人員進行識別和判斷,再發(fā)到研發(fā)側(cè)。

可以通過AI大模型去做預(yù)判,把每天輿情的問題自動轉(zhuǎn)換成一些匹配,分給對應(yīng)的質(zhì)量部門和研發(fā)部門。

2)媒介投放

投放廣告的時候,需要寫關(guān)鍵詞,可以通過AI大模型去做拓詞,拓展關(guān)鍵詞把它放進去。

還可以通過大模型去做標題和素材的生成,批量生成多個標題和對應(yīng)的落地頁素材。

3)AIGC智能生成內(nèi)容

在車企營銷部門會做專門的品牌素材,這些素材創(chuàng)作出來視頻以后,需要到對應(yīng)社交媒體平臺去做矩陣式分發(fā)。

可以通過AIGC基于這些素材進行二次創(chuàng)作,在分發(fā)給銷售人員進行分發(fā)獲取對應(yīng)的線索。

我們在汽車行業(yè)聚焦在小紅書訓練一個垂直大模型,進行銷售內(nèi)容的二次創(chuàng)作,在新車發(fā)布上市、品牌日等場景下做一些內(nèi)容發(fā)布。

還有一些賦能設(shè)計師的工作,輔助海報的設(shè)計、落地頁的圖文設(shè)計等。

3. 銷售:強化銷售能力,賦能線索轉(zhuǎn)化

1)AI銷售助手

在銷售線索跟進時,大模型能進行一些AI洞察,包含線索的一些屬性、偏好以及對應(yīng)的跟進話術(shù)策略。在AI銷售助手里,將整個話術(shù)知識庫掛載到大模型上進行訓練。

2)AI銷售培訓對練

AI模擬銷售和用戶做真實場景的對練培訓,可以檢驗介紹的點有沒有到位,如產(chǎn)品功能介紹,以及對應(yīng)話術(shù)有沒有說,比如引導(dǎo)試駕。

在AI的培訓對練中,模擬過程也可能會拆成幾步,如邀約跟進過程的話術(shù),或者出單相關(guān)話術(shù)和遇到的問題。

3)AI外呼摘要

在AI外呼時,可以通過大模型做外呼摘要的處理,其實是對語音的數(shù)據(jù)處理,包括對方言的處理,還可以在銷售環(huán)節(jié)中進行探索。

4)AI銷售培訓師

可以通過數(shù)字人的形式去做培訓,批量培訓銷售人員。講課時的數(shù)字人在語音上可以達到逼真的效果。

4. 服務(wù):洞察用戶訴求,賦能個性化服務(wù)

1)客服知識庫

AI大模型可以對客戶提問做綜合管理,客服人員無需自行探索,使用大模型提供的答案即可給出滿意的回答。

2)AI售后診斷

在車聯(lián)網(wǎng)數(shù)據(jù)平臺上的智能診斷平臺,其中有駕駛的數(shù)據(jù)、電池的數(shù)據(jù)、信號的數(shù)據(jù)等,根據(jù)對應(yīng)的問題可以發(fā)現(xiàn)規(guī)則中沒有的診斷問題。

通過大模型,可以把診斷的這些規(guī)則形成一個專有知識庫。

5.數(shù)據(jù):變革取數(shù)模式,助力數(shù)據(jù)管理

1)AI取數(shù)(chatBI)

AI取數(shù)chatBI,替代了傳統(tǒng)BI,目前還存在取數(shù)不準的問題。

另外,還可以通過大模型的BI工具去做快速的看板搭建,還可以幫助寫SQL。

在未來,可以直接通過語音問答,即可獲取到底層數(shù)據(jù),改變看數(shù)據(jù)的場景和取數(shù)的交互方式。

2)AI口徑管理

在指標管理平臺里面,各個指標口徑不一致,通過大模型的工具,可以解答指標的口徑,同時能告知上下游指標間的關(guān)系。助力指標管理。

3)AI元數(shù)據(jù)管理

通過元數(shù)據(jù)管理平臺,可以賦能上游業(yè)務(wù)系統(tǒng)去做表的建設(shè),保持元數(shù)據(jù)的統(tǒng)一規(guī)范,同時賦能數(shù)倉的建模以及下游模型的搭建。

三、大模型的基建策略

1.碰到的難點

目前大模型建設(shè)中遇到的難點主要包括以下幾方面:

1)大模型使用場景怎么設(shè)定

大模型的使用場景該如何去設(shè)定,比如前面講到的最開始不是一上來就要做小紅書這樣的垂直大模型,而是要做一個AIGC,在后續(xù)交流過程中逐漸發(fā)現(xiàn)場景越來越聚焦,最終聚焦到小紅書素材生成的場景。

2)基于場景的語料怎么準備和處理

每次大模型訓練都可能會涉及到場景和語料,怎么準備怎么處理,并且在準備和處理時,不僅僅是技術(shù)人員,還有產(chǎn)品人員、業(yè)務(wù)人員都要共同參與。

如AI銷售培訓場景中,進行了3-4輪的改進,耗時兩個多月,每準備處理一次,都會想到一些新的處理點,在語料的處理上也不斷發(fā)現(xiàn)了一些技巧。

3)大模型怎么訓練(prompt和微調(diào))

訓練包括兩種,一種是直接訓練和做微調(diào),需要有比較好的平臺和算法團隊;第二種是輕量級,用prompt做提示詞先把場景做好,在需求驗證的情況下,對prompt進行調(diào)試,在場景和需求固定以后再去做微調(diào)和算力調(diào)整。

4)大模型的成本怎么評估:訓練成本和運行成本

大模型的訓練成本,在調(diào)研時發(fā)現(xiàn)各個廠家大模型有很多是共有token的方式,還有的是私有化部署,需要卡和平臺的資源。

另外就是開源,開源的就是卡的資源。在成本上需要充分開綠,項目能不能持續(xù)的成本投入很重要,除了訓練時的成本,在運行時成本更高。

5)大模型部署:共有VS私有

各個公司的部署方式不同,私有大模型平臺成本是非常高的,至少千萬級以上,啟動這種項目不是小項目,需要業(yè)務(wù)價值能夠承載。

如果僅為探索,可以調(diào)用共有大模型API去進行嘗試。

如果有對應(yīng)的算法團隊,可以做一些開源模型的嘗試,這樣場景驗證可以有比較好的冷啟動。

6)大模型效果怎么評估

大模型的評估包括三個角度,第一個是精準度,第二個是擬人的角度,第三個是提問的關(guān)聯(lián)角度。

在大模型評估時,可能內(nèi)容人員無法評估,可以借助外部進行,如供應(yīng)商,評估內(nèi)容不僅包括技術(shù)指標,還有業(yè)務(wù)指標。

7)是否安全合規(guī)

安全合規(guī)方面,有的同學可能會使用OpenAI等工具,這在合規(guī)上是不允許的,需要盡量避免。

在大廠的模型里面,都具備一些能力針對安全合規(guī)的內(nèi)容進行審核和過濾。

8)業(yè)務(wù)價值怎么衡量

在業(yè)務(wù)價值的衡量上有個策略是離錢近容錯高,也就是離業(yè)務(wù)很近,如銷售業(yè)務(wù)容錯率比較高,不會因為回答不精準導(dǎo)致很大的問題,但如BI,回答錯了影響則會非常嚴重。另一方面是覆蓋范圍,覆蓋范圍廣,提效的影響就更大。

2. 建設(shè)AI大模型能力的痛點

目前建設(shè)大模型主要痛點包括:技術(shù)變化快,人才短缺,初始投入大,缺少成熟的工具鏈,產(chǎn)業(yè)鏈分工尚未成熟,場景落地缺乏經(jīng)驗,以及應(yīng)用效果難評估等。

3. 如何構(gòu)建AI大模型基礎(chǔ)設(shè)施

構(gòu)建AI大模型的基礎(chǔ)設(shè)施,可以采用公有云實例的方式,如果有專有云實例的話,可以嫁接一些自己的向量數(shù)據(jù)庫。如果數(shù)據(jù)不敏感,就用純公有云的方式。

另外就是私有部署,私有化的大模型是最貴的,基于通用的行業(yè)大模型,訓練公司自己的垂直大模型,或者進一步訓練各個業(yè)務(wù)場景的大模型,如營銷的、銷售的、售后的大模型等等。

四、未來的展望

大模型應(yīng)用落地分為三個階段,最終帶來應(yīng)用的爆發(fā):

1)人與AI協(xié)作

在2023-2024年,這個時候更多的是人和AI的協(xié)作,現(xiàn)在AI已經(jīng)應(yīng)用于內(nèi)容生成、文字處理、圖片設(shè)計等場景中。

2)部分自動化

這一階段自動化可能會出錯,在一些容錯高的地方可以先行應(yīng)用,比如廣告的場景、培訓的場景等等。

3)全自動化

在全自動化階段,整個的訓練決策,執(zhí)行的動作,以及整個agent都將實現(xiàn)自動化。

作者:趙松,極氪汽車大數(shù)據(jù)產(chǎn)品負責人,多年汽車數(shù)字化從業(yè)經(jīng)歷。

本文由@本生編輯,datafun韓宣宣、李瑤校稿

微信公眾號:松果子聊數(shù)字化

本文由 @松果子聊數(shù)字化 原創(chuàng)發(fā)布于人人都是產(chǎn)品經(jīng)理,未經(jīng)許可,禁止轉(zhuǎn)載。

題圖來自Unsplash,基于CC0協(xié)議。

該文觀點僅代表作者本人,人人都是產(chǎn)品經(jīng)理平臺僅提供信息存儲空間服務(wù)。

更多精彩內(nèi)容,請關(guān)注人人都是產(chǎn)品經(jīng)理微信公眾號或下載App
評論
評論請登錄
  1. 目前還沒評論,等你發(fā)揮!